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A First-Order Systems Least-Squares Finite Element Method for the
Poisson-Boltzmann Equation
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Abstract

The Poisson-Boltzmann equation is an important tool in ringesolvent in biomolecular systems. In this
paper, we focus on numerical approximations to the eleetiiospotential expressed in the regularized linear
Poisson-Boltzmann equation. We expose the flux directtyutih a first-order system form of the equation. Using
this formulation, we propose a system that yields a traetkgalst-squares finite element formulation and establish
theory to support this approach. The least-squares firetaaht approximation naturally provides aposteriori
error estimator and we present numerical evidence in stipptiie method. The computational results highlight
optimality in the case of adaptive mesh refinement for a a6 molecular configurations. In particular, we
show promising performance for the Born ion, Fasciculin &ftranol, and a dipole, which highlights robustness
of our approach.
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1. Introduction

Solvent plays a critical role in determining the structune &unction of biomolecular systems. However, the
explicit representation of solvent at a molecular levefismintractable due to the range of scales required. More-
over, properly modeling solvent interactions with molesuis computationally expensive due to the complexity
of the atomistic interactions that must be sampled overipteltonfigurations. As such, implicit solvent models,
such as the Poisson-Boltzmann model [1] and Generalized Bodel [2], confront this dficulty by treating the
solvent as a bulk continuum.

The focus of this work is on numerical solutions to the PaisBoltzmann equation (PBE), which approxi-
mates the mean solvent forces by assuming the ions arebdisii according to the Boltzmann distribution. This
results in a unique electrostatic potential described by ithplicit solvent model [3]. In particular, we seek a
numerical solution of the linearization of the regulariZ8E (RPBE). The use of a regularized formulation [3],
is required because the original statement of the PBE ygfdyularities in the electrostatic potential. Regular-
ization overcomes this issue by analytically subtractiregdingularities from the electrostatic potential yiefda
modified version of the original PDE. To further simplify theoblem, and focus on thefeacy of our discretiza-
tion, we linearize the RPBE. The linearized version has n@riye same challenges as the RPBE, however it
features reduced computation cost [4] while remaining asfglajly accurate perturbation to the fully nonlinear
problem [5].

A number of diferent directions for numerically solving the Poisson-Balann equation have been pursued.
Approaches such as finiteffirence and finite volume methods [6-15], finite elements oustf8, 16—-22], bound-
ary element methods [23—34], and integral equations [3ph&%e been developed for this problem. Yet, as the
complexity of applications increases so do the demandsenumerical approximation, and we are motivated to
investigate additional computational tools that provideedium for more robust andfient simulation.
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In this paper, we focus on a variational setting for the PBE thuthe underlying theoretical support for
numerical methods and the established analysis of theiequdh particular, we propose a least-squares finite
element formulation of the linear regularized PoissontBohnn equation. Least-squares finite element methods
offer a viable approach tdfecient and accurate approximation. The least-squares mhetedollow begins by
reforming the partial dferential equation as a first-order system. A functional entbonstructed based on
the residual equations of the first-order system, and ismingd. A first-order system least-squares (FOSLS)
approach to finite elements has shown to fieative for numerous problems. In particular, elliptic pgeohs [37,

38] with discontinuous cdicients [39-41] are theoretically competitive and numéigiqalausible.

The existing FOSLS theory motivates our treatment of the BREthe theoretical properties for the FOSLS
form we pose in Section 3 are not fully developed. We estalihiese results and confirm the existence of a
unigue solution for our problem. We propose a first-ordetesydor the PBE in Section 3 that correctly addresses
the jump discontinuity inherent in the problem. The PBE isalied through a dielectric cfiient, e(x), and
Debye-Hickel parametek(Xx), that are discontinuous across an interface. Propentegatof the flux term across
this interface is critical to the variational formulatiofo this end, we propose a unique form of the flux that both
captures the underlying physics and yields a system ametahblleast-squares minimization.

The goal of this paper is to outline a least-squares finitmete method for use with existing computational
tools, such as the Finite Element Toolkit (FETK) [42], whigbes piecewise linear elements over tetrahedral
tessellations of single domains. The result is a compet#ind straightforward finite element method for the
PBE using adaptive mesh refinement. Adaptive refinemengdisiite elements has been studied for the Poisson-
Boltzmann equation in a Galerkin formulation [18, 19]. Thepproaches focus on resolution of the singularities
in the original PDE. Here, we use the functional provided liy least-squares formulation to guide refinement
with similar success. Treatment of the interface condiiscautomatic in our formulation of the problem, naturally
capturing the physics around the interface while still ggimenable to approximation by standard finite elements.

The remainder of the paper is organized as follows. In Se@jeve summarize the PBE, its regularization and
linearization, and the general problem domain. We outlieeROSLS terminology in Section 3 and introduce our
formulation of the method. Moreover, we establish theoedty the use our formulation and discuss implications
and techniques for computational simulation. In Sectiowd,provide numerical evidence offectiveness of
the FOSLS approach for a number of molecular systems. Thieatié$ shown to beféective for problems with
known solutions (Born ion), for more complicated structuféasciculin 1 and methanol), and for a problem with
low regularity (dipoles).

2. Poisson Boltzmann Equation

The Poisson-Boltzmann equation models the electrostetiityt between molecules in an ionic solvent. In
this model, it is assumed that the ions in the solvent areillised according to the Boltzmann distribution and
that the potential of the mean force on a particle is simpéydharge of the ion times the electrostatic potential.
This yields the general Poisson-Boltzmann equation [5],

=V - (e(X)V$(X)) = dnps(X) + 4n ; c;Q5;(¥) exp[% QJ-S¢(X)] , (1a)

”l‘ilm #(x) = 0. (1b)
Here,¢ is the unknown electrostatic potentialis the dielectric coicient, ps is the fixed charge distribution in
the solute (biomoleculeks is the Boltzmann constant, afidis the temperature. It is assumed that the solvent is
composed ofg species of ions, each with cha@? and concentrationjs. The accessibility of th¢th ion-species
to a point,x, in space is described biy(x).
For a solute in a 1:1 electrolyte solvent (e.g. NaCl), theghaf each ion species isl unit charge, and the
general Poisson-Boltzmann equation simplifies [1] to

=V - (e(X)Vp(X)) + ;?2(x) (%) sinh(%gz()) =4 Z Qio(x— x), (2a)
i=1

lim ¢(x) = 0. (2b)

[IX]|—=c0

Here, we have further assumed that solute contains a tataligéd point charges, with thiéh chargeQ;, centered
at positionx;. The resulting distributiorys, is a linear combination of Dirac delta functiod$x — x;).
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The domain for the problen®R?, is subdivided into a molecular regiof,, a solvent regionQ¥, and an
interface between the two, denotedIbyThe solute is surrounded by solvent, which is represergadcantinuum
over the subdomaifg’ = R3\Qp. In some Poisson-Boltzmann models, an additional ion simtuor Stern layer
is present betweef2s andQ,,. The Stern layer provides separation between the solutéharidns of the solvent.
As a result, the dielectric matches the dielectric in theesnl region and the ionic strength is zeko=0). In
this paper we focus on the more challenging issue of the jumtbe dielectric, and neglect the Stern layer. The
subdomains for a typical biomolecular solute are shownguig 1. The dielectric cdigcient,e(x), and modified

Solvent _ +
Q. ) *
+ _
+
_ + +
. 4
Ions ——» + /
\
; /f Solute
nterface (Explicit Charges)
r Qn

Figure 1: Subdomains for the Poisson-Boltzmann equation

Debye-Hickel parametek(X), describe the accessibility of the solvent to the soluttane defined 0@, U QF
by the piecewise constant functions

() = {em X € Qn

€s Xe Qe

0 X € Q)
and () = BeNael o 3)
K% = Esoger s X € QS

Here, en and s are positive constantdy, is Avogadro’s number, ane; is the charge of a proton. The ionic
strength/s, is a physical parameter which varies depending on the sblve

For computational reasons, the unbounded solvent dorf¥inijs typically truncated at a finite radius from
the “center” of the molecule, which gives rise to a bounddslesd domain Qs. Dirichlet boundary conditions
are imposed to capture the asymptotic behavior of the solaih an unbounded domain. Combining this with the
change of variablesy(X) = e:¢(X)/ksT, results in a dimensionless Poisson-Boltzmann equatich@spherical
domainQ = QU QgUT:

—V - (e(X)VT(X)) + k2(X) sinhdi(x) = k—ec Z Qio(X—X), Xe€QnUQs, (4a)
i=1
ax) = 9(x), X € 4Qs, (4b)
ﬂ (X )‘9“(")]] -0, xel. (4c)
r
where the jump at the interface is defined as
H (x )au(x)]] _ Jﬂ} e(x+an) ﬁﬁ(xa; an) ~e(x— an)aﬁ(xa;] an)’

with n as the unit normal to the interfate
The boundary conditions are prescribed using a linear coatibin of Helmholtz Green'’s functions,

—Ks|X — Xil
kBTZ@s'X X.I ( Ves ) ®)
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In contrast to (2a), the principal equation is defined ovehesubdomain and an interface condition is introduced
onT. This restatement makes explicit the normal continuityliethbby the strong form divergence e{x)V¢
across the interfacein the original PBE.

We denote the standard Sobolev spaces?6) and H(Q), for k > 0. HX(Q) consists of functions ove®
having square integrable (weak) derivatives of order up.tdtke norms orL?(Q2) and H¥(Q) are expressed as
I - lloq and]| - llka, with the L2(Q2) inner product written-(-)o. In addition, we define the Hilbert spaces

H(div; Q) := {q € L3(Q)%: V- q € L?(Q)},
Ho(div; Q) :={q € H(div; Q) : n x q = 0 ondQ},
H3(Q) := {ue HY(Q) : u= 0 0nsQ},

with norms

l9llGy.q =lalliq + IV - allf g (6)
IullZ ¢, =Nulld ¢ + 1IVUllg - @)
One dificulty with (2a) is regularity. The right-hand side ¥; Q;6(x—x;) is notinH™1(Q), i.e., the dual space
of H3(Q). Practically, the right-hand side induces singularitfed at the solute atom centexs These singular-
ities are the familiar consequence of solute-solute elstitic interactions satisfying Coulomb’s law. However,

finite element and finite dierence methods often require more smoothness in order targea convergence.
Following [3], we overcome this issue by decomposirigtd

U=U+ U 8

whereu is an unknown smooth function ang is a known singular function. The Coulomb functiag, satisfies
the Poisson equation

—enV - VUe(X) = i’;—i“ D Qd(x=x), )
i=1

and absorbs the singularitiesunCombining (8) with (4), we obtain the regularized PBE or FPB

—V - e(X)VU(X) + k2(X) SiNh U(X) + uc(X)) = V - (e(X) — €m)VUe(X), X € QsU Qpn,

u(x) = g(x) — uc(x), X € 0Q), (20)
ﬂe(x)ag—(nx)]]r — (em— Es)atg;r(lx), XeT.

Sincex(x) ande(x)—em are zero insid€,,, we avoid evaluating the Coulomb potential, near the singularities
present at each point charge,e Qn. This yields a right-hand side in (10) that is a well-definéstribution in
H-1(Q) and, as a result, equation (10) is a well-defined nonlineaoisd-order elliptic equation with a unique
weak solutioru in HY(Q) [3].

A simplified version of (10) is the linear regularized Pois€oltzmann equation, which is obtained by lin-
earizing the hyperbolic sine:

—V - e(X)VU(X) + K2(JU(X) = V - (e(X) — m)VU(X) — 2(X)U(X), X € Qs U O, (11a)
u(x) = g(x) — uce(X), X € 0Q, (11b)
I]e(X)a;—g()]]r = (ém— Es)a%rgx)! xeT. (11c)

Physically, the linearization reduces the ionic resporigeepsolvent to the solute. This approximation is accept-
able unless the solute is highly charged [4]. In this caserthgnitude of the electrostatic potential is large, and
the approximation sinf ~ u is not accurate [1].

3. FOSL S Formulation of PBE

The First-Order System Least Squares (FOSLS) finite elemettiod is an alternative to standard and mixed
Galerkin finite element methods [43]. FOSLS begins by cdivgthe PDE to a first order system. Using the new
set of equations, a functional is then defined whose mininsiakves the original PDE.

4
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FOSLS dfers a number of potential advantages over traditional nasth®he functional is minimized using
a variational principle, giving rise to a symmetric bilimdarm. A discretization based on this form leads to a
symmetric positive-definite linear system, which is ideal $olvers such as preconditioned conjugate gradient.
Also, the bilinear form is often elliptic with respect to aaptical norm, and as a result the finite element spaces do
not need to satisfy the discrete inf-sup condition of Lady®kaya-Balika-Brezzi [44], unlike mixed methods.
A practical consequence is that basic finite element spaggscontinuous piecewise linear polynomials, may be
used for all variables.

The FOSLS functional also provides a loeaposteriorierror estimate. Such estimates are complicated for
other methods, but the FOSLS residual norm provides a btfaigvard and accurate estimate for our problem.
This local error estimate is used for adaptively refining aimie our numerical experiments and we highlight the
effectiveness of this tool.

Least-Squares finite element methods are not without lilmitahowever. The introduction of new variables
to formulate the first-order system ultimately increasesdégrees of freedom and complexity in computing the
solution. This is not necessarily a disadvantage as the agables are often physically meaningful and are often
needed elsewhere in the simulation. For example, the FOStBufation of the PBE introduces a secondary
“flux” variable, which is used to féectively compute potential of the mean force required indblettion of the
Steady-State Smoluchowski Equation [45]. Another poattiawback is that FOSLS requires more regularity
than might be present in the problem to ensure optimal estimates. Optimal error estimates using a Least-
Squares approach for PBE can be derived through a multi-tioapproach for such problems [46]. In this
paper, we also use adaptive refinement to overcome thessis§@omputational complexity, yielding optimal
convergence rates in our numerical experiments.

A typical approach to forming a first-order system of (11) rosesingle domairQ is to introduce a flux,

g = e(X)Vu (e.g., see [39]). The resulting first-order system is

g-evu=0 inQ, (12a)
—V-§+Kk2U=V-(e(X) — em)VUe — KU in Q, (12b)
u=g-ue onoQ. (12¢)

An application of Green’s theorem on this system shows thaiss any surface i@ with normaln, n - § is
continuous. In particular, solution to system (12) satisfie

Hq-n“ =0 xeTl.
r

However, sincéj = eVu, equation (11c) implies,

Hq : nur = (em— €)VU(X)-n X eT.

This impliesg-n is not continuous across the interfdéeand hence, a least squares approach based on system (12)
is an incorrect formulation for solving the RPBE.

For a well-posed FOSLS formulation to system (11), we neetkfime a first-order variablg, whose normal
component is not only continuous across the interface, Ibatsatisfies the interface condition required by RPBE.
To ensure these conditions, we define e(X)Vu + (e(x) — em)VUc, Which results in,

g/e(X) — Vu = ((e(X) — em)/€(X))VUc in Q, (13a)
—V - g+ K2U = —K2Uc inQ, (13b)
Uu=9g- U onoQ, (13c¢)
Nxq=nx(eVg+ (e(X) — em)VUc) ONIQ. (13d)

Now equations (11c) and (13) imply,

Hq-n“ =0 xerl.
r

We now pose our problem in abstract form and establish a ergqlution. To simplify the analysis we consider
homogeneous Dirichlet boundary conditions. Using a stahlifiéing argument, we obtain

a/€(x) — Vu = ((e(x) — em)/e(x))Vue  inQ,

-V q+ EQU = —EQUC, in Q, (14)
u=0 onoQ,
nxq=0 onoQ.
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The least-squares functional based on (13) is as followsq EoHp(div; Q) andu € Hé(Q), we define
G(0, U; Ug) = lla/€(x) — Vu— ((e(X) — em)/e(X)VUell g + 1| = V - G + KU+ KUcllf - (15)
The solution of (13) solves the minimization problem

G(d, U; Ue) = min G(r,V; Uc) (16)
(r V)eHo(div;Q)xH3(Q)

and leads to the variational problem

F(q,u;r,v) =£(r,Vv), a7)

where the bilinear forn¥ and linear functionaf are
F(a,u;r,V) = (q/e = VU, T /e = W)oq + (V- q + K2U, =V - T + k2V)g. (18)
£r.v) = =(KUc, =V - T + kV)oa + (((6 — €m)/€)VUc, I /€ — VW)oq. (19)

3.1. Ellipticity of FOSLS functional

To show the variational problem (17) is well-posed, it isfisient to prove thaG(q, u; O)% defines a norm
equivalent to thed (div) x H: norm (Theorem 1). This result also ensures that our finit@ete solution is the best
approximation to the true solution under the norm define@ky, u; 0). Before proving this norm equivalence,
we start by stating and proving a lemma, which will be usedhégroof of Theorem 1.

Lemmal. Let h(x) and Kx) be two positive bounded functions Qni.e. 0 < ¢; < h(x) < ¢c; and0 < ¢; < k(X) <
¢, for all x € Q, where g and ¢ are constants. Then there exists positive constantsnda, such that

alf'(q, u;g,u) <7(q,u;q,u) < az?ﬁ(q, u; g, u), (20)

where the bilinear forn¥ is defined as

7@, u;r,v) = (Vh(a/e - Vu), Vh(r /e = VW))oq + (Vk(=V - g + ), VK(=V - T + V))oq. (21)
Proof of Lemma 1Takinge; = c;* ande, = c;* gives the desired result. O

Theorem 1. The bilinear form# defines a norm equivalent to thediv) x H! norm. That is, there exists positive
constantsy; andvy, such that

F(9. U; 1, V) < ya(llallEa + U5 o) 200 g + VIS o) (22)
and
F(a, U; 9, U) = ¥2(lalE gy + 115 ) (23)

Proof. A proof for the general case is given in [37]. Here wiEeoa proof for our specific case, to obtain sharper
constants of ellipticity; our proof is in the same spirit gsraof presented in [39].

First we prove boundedness®f(equation (22)). An application of Cauchy-Bunyakovskyr®arz inequality
to (18) leads to

F(a,u;1,V) < (F (0, u; g, W) 2(F (r, v 1, v) Y2 (24)
Using the fact that is bounded away from zero iR yields
F(d.u; . u) = [lg/e = Vulg o + 1| = V- g+ Kull}

< 73(IIQII(2),Q + IIVUIIS,Q +IV- QIlg,g + IIUIIS,Q)
= 310l @iy + IUlE0). (25)
whereys = max(2 2«*, 2¢72) = max(2 2%, 26;2, 2¢;%). Combining equations (25) and (24) proves boundedness

of 7.
To prove coercivity, we consider a modified bilinear formgdagined by (21). We definig(x) andk(x) as:

_Je(® X € Qm 1 X € Qm
h() = {TE(X) X € Qg and k(x) = {T/Eg X € Qs (26)
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wherer is a constant such thatOr < 1.
We can decompose the integral ogeand evaluaté over Qg andQp,,

F(a,u; 9, u) = 7(a, U; G, Wlo, + 7 (d, U; G, o, (7)
where R
F (0. U; 9. U)lo, = [ V70/ Ve — VT VeVull5 g, + 11— VT/ksV - q + VrksUllg g, (28)
and A
F(9.U; 9. U)lg,, = lla/ Ve - VeVulls g, +I1IV-dlig, - (29)

Integration by parts shows that

fV~qu+ q~Vu—fuq-nm:0, (30)
Qm Om T

whereny, is the unit normal at’, pointing from the solute region into the solvent region. piing this result
to (29), we obtain

79, U; 0, W, = lla/ Vel3q, + I VeVuld, -2 f q-Vu+[V-qllig, +2r f V-qu

Qm Qn

+ 2Tf q-vVu- 2Tfruq N+ U~ Tlullig,
=lla/ Ve + (t - D)VeVulgo, +IIV-q+tuldg — 72Ul
+ @2 =) IVeVulll g, - 27 fr ug - N (31)
Similarly, using integration by parts on equation (28) gl
(0. U; 0. Ula, = 1 V7a/ VellZ o, + I VT VeVulld g,
-2t | q-Vu+|IVTV - a/kdlli g, + I VTksUlll o, — 27 f v-qu

Qg Qs
= 1V@/k)V - Alid o, + 1V7A/ Vel3g, + 1 VT VeVulld o + I Veksula g, — 27 f ug-ns,  (32)
T

whereng = —ny, is the unit normal alond, pointing from the solvent domain into the solute.
Using the Poinca-Friedrichs inequality, we can assume

Iulgo < AVUlEg, — with A>1. 33)
From equations (27), (31), (32), (33) and choosing % < 1 we have

F(9.U; 0, U) = | V7a/ Vell2 g, + | V7 VeVUl3 o+ 1VTV - 4/kell3 g, + Il VTksUll3 o,
+1la/ Ve + (r = D)VeVullg o, + IV - q+ Ul o — 72Ul g, + (1 — ) VeVulli g,
> | VT VeVulig o, + (27 — 1)l VeVulls,, — TIullg g,
> 7| VeVullg o — llullf o > (r — ATl VeVull
1
= 7 IVeVUl g > asliVuilo, (34)
whereas = & min(em, ).

Now from equation (20), we get
F(0. U; G, U) > agl|Vull3,, (35)

wherea, = a1a3. From the Poinc@-Friedrichs inequality (33), we find
F(d,U; 9, U) > as|lullf g (36)

Moreover,

1
la/ellfq < 2(la/e — Vullgq + IVUlE o) < 2(1+ Z)T(q’ u; g, U,
;
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and henceF (g, u; g, u) > aelldllf, for @ = 4 [2(1 + as) Max(es, en)] . Similarly,

IV-qlidq < 231V - q - Pullgq + Ul o) < 2(1+ Kies)F (9, U; g, U), 37)

and thus7 (d. u; 0, 0) > a7llV - 2, for a7 = [2(1+ as)| .
Takingy, = min(as, as, as, a7) completes the proof. O

The FOSLS functional (15) isl(div) x H* equivalent. In some FOSLS formulations, a curl term of thenfo
V x (g/€) = 0 is added to problem formulation (e.g., [39]), yieldingl&x H(div) n H(curl) equivalent FOSLS
functional. The extra constraint is motivated &§y= €Vu, which impliesV x /e = 0 (c.f., [47], Theorem 2.9).
However, for our case, we cannot take the cuid . This follows from our definition of = eVu + (€ — em)Vug;
the curl ofg/e is undefined at the interface. Hence we do not add the curltiethe formulation.

Traditionally, developing anfiective error estimator for use in local adaptive refinemgwehellenging. Error
estimators based on the Galerkin method are not immediatelipus from the problem formulation and local
error bounds for the PBE can be complicated to derive [3]olmtrast, the FOSLS framework directly provides a
natural error indicator through the functional. The localue of FOSLS functional is aa posteriorilower error
bound, and, under some restrictions on mesh refinementptivedican be shown to be a sharp theoretical error
estimate [48]. We exploit this fact and build an adaptivenesfient scheme based on the value of the FOSLS
functional.

Let G,(q, u; uc) be the value of the FOSLS functional (15) restricted to eetn. Note that ifS is the set of
elements comprising the mesh, then

G(d, U; Ue) = ), G(a, U; ).

T€S
Letu, = VG.(0, U; Us) andumax = maSXyT. We mark simplex for refinement ifu, > yumaxwherey € (0, 1).
TE

Our strategy is relatively straightforward, yet more adehmarking strategies based on the “solvation free-
energy” [49] and FOSLS [48, 50] functionals have been pregdds the literature. However, in our numerical
experiments, we did not find a significantfdrence in performance when the marking strategy is varied fo
our problem. When compared on the same mesh, FOSLS requiresmeonory and CPU time than the standard
second-order Galerkin method. However, the meshes prddyctne corresponding adaptive refinement schemes
are diferent, and the FOSLS approach is often able to achieve a noousade solution with less refinement.
As a result, the FOSLS approach is often mofiecient than a standard second-order Galerkin method. The
effectiveness of our scheme is highlighted in Section 4.

4. Numerical Experiments

We use a tetrahedral mesh@fwith globally continuous piecewise linear finite functiofisl elements) and
implement our finite element method and mesh refinement inkFE2]. The meshes are generated using the
Geometry-preserving Adaptive Mesher (GAMer), which isigiesd to produce simplicial meshes of molecular
volumes and interfaces [51]. As a result, the solvent dorhas a spherical outer boundary and the mesh is
conforming at the interface of the solvent and moleculeargi

For the first four numerical experiments, we chogge= 1, es = 78, andks = 0.918168, which corresponds
to a typical ionic strength of @M. In these experiments, we solve for the regularized piateand strongly
impose boundary conditions. The experiments are perforomethe Born ion, Fasciculin 1, methanol, and a
simple dipole. Leg" andu” be our finite-element solution, amgandu the true solution. We verify convergence
to the solution by monitoring the square-root of FOSLS fioral, G(g", u™; uc)%, since the FOSLS functional
measures the error in the norm induceddyG(q", u"; u))z = G(q" — g, u" — u; 0)z. Therefore convergence of the
FOSLS functional to zero implies convergence of our finiement solution to the true solution. We use uniform
octal refinement and adaptive refinement to test ffecveness of your method, with adaptive refinement being
carried out by longest edge bisection. Sigge ., O)% is equivalent tdH (div) x H norm, a standard finite-element
error estimate implies optimal convergence rate t@® using uniform refinement with piecewise linear basis
functions [37]. This optimal estimate assumes the probleimetH? regular. The convergence rate degrades as
the solution becomes less smooth. We examine this scerthpol€), and show that we still recover optimal
convergence using adaptive refinement. In the followinglteswe refer taG(q", u™; uc)% as the FOSLS norm
and plot convergence rates normalized by the largest value.

Finally, to validate the solutions generated by our impletagon, we compute the solvation free energy of
transcription factor PML (PDB code 1BOR). We compare the poted value with values found in the literature.
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Born lon

Due to the complex geometries associated with molecules thre few analytical solutions to the PBE or
linearized PBE; however, it is possible to find an expres&onhe potential of a spherical ion in a solvent [52].
This system is referred to as the Born ion after its author Basn [53]. The domain is consists of a spherical
solute of radiufR with a single point charg®; at its center. The solute is surrounded by an unboundedrdgplve
Qs, as depicted in Figure 2a.

Writing the linear regularized PBE in spherical coordinatietds

_r%% (e(r)rZ%UM) +KE(r)u(r) = —K*(r)ue(r), r+R

d d
[c0gru0)] = @n-eague). r=R
U(e0) =0
wherew = ks/ /€. Following [52], we obtain the analytic solution

) Crexp[-w(r — R)] /r — Cy/r, R<r,
N =
(C1-Cy)/R 0<r<R

where
_&Q 1 eQ 1

Figure 3a displays the convergence of the reaction potantiathe L? norm, where the normalizeld? error
is plotted as a function di, the number of points in the mesh. In three-dimensions, veeme a convergence
rate of nearlyO(h?) for uniform refinement, which corresponds @N-%3). On the other hand, for adaptive
refinement, we observe a slightly better convergence ratguiré-3b displays the FOSLS functional residual as
the mesh is refined. In three-dimensions, a convergencefa®éh) corresponds t@(N-Y3). We see that the
FOSLS functional decreases nearly lineaniburing refinement, we ensure that new points on the slofieent
interface lie on the analytically determined sphericalrmary of the interface. As an example of convergence, in
Figure 2b we display a slice of the true solution, a numescéaition on the initial mesh, and numerical solutions
after two successive steps of uniform mesh refinement.

1

Fasciculin 1

The Born ion is a useful test case as the analytical solu&mown; however, it is not a realistic simulation.
To study the &ectiveness of the FOSLS formulation on a realistic protei®,compute the regularized potential
of Fasciculin 1 (1FAS in the Protein Data Bank) in an impl®ilvent. 1FAS is a neurotoxin found in green
mamba venom [54]. The dynamics and electrostatics of thei¢td® 2 variant of this protein in its role as
an acetylcholinesterase inhibitor have been studied ih 488 [56], where the electrostatics are argued to be
important to its function. In our experiments we use the dpgon of the molecule specified in the PDB file
9
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from the Protein Data Bank and striff vater molecules using VMD [57]. The molecule region is nafeely
spherical, and we do not expect the solution to be symmetneeadid in the case of Born ion. It is assumed that
the initial mesh defines the solute and solvent regions gdtibasolutgsolvent interface in this case is polygonal
and defined by the initial mesh. Consequently, refinemens gadihts to the polygonal interface. While the
analytical solution for Fasciculin 1 is not known, we areeatol monitor the convergence of FOSLS functional.

Figure 4 shows the normalized convergence rate of FOSLSifurad. Both uniform and adaptive refinement
perform well: the convergence rate is better tkxh) for both cases. Figure 5 depicts adaptive refinement around
the Fasciculin molecule. The adaptive scheme refines agjgedsaround the areas where the solution is changing
sharply.

Methanol

We examine our method in the more challenging setting of énametl molecule, obtained from the APBS
software package [11]. The model consists of three changfeerss representing charge groups:z@Hd H with
positive charges of 0.27 and 0.43 respectively, and an O wafitira negative charge of 0.7. The net charge on the
molecule is zero. Figure 6a displays the methanol molecule.

We assume again that the initial mesh properly defines theesahd solvent regions. Figure 6b displays the
FOSLS functional as a function of the number of vertices ertiesh. We see from the plot that the FOSLS func-
tional does decrease, but the convergence is slightlytesgX(h). On the other hand, adaptive refinementis ideal
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Figure 7: Adaptive refinement around the solsévent interface of methanol

for this problem since the solution varies sharply acrossrtiterface, indicating areas where local refinement is
useful. As Figure 6b shows, adaptive refinement yields #jidtetter tharO(h) convergence. The performance of
adaptive refinement is shown in Figures 7 and 8, where thdanégred electrostatic potential around the interface
is displayed. Figure 7 shows the initial mesh and an addptiedined mesh. Figure 8 displays a slice of the
regularized solution, which highlights the areas in whivh $olution changes rapidly and also that the solution is
not symmetric.

Figure 8: Methanol: Solution around the interface

Dipole

In this section we illustrate the performance of our schema simple dipole, as depicted in Figure 9. The
linearized PBE for ions inside a spherical molecular redias been studied in [58]. For our experiment the
domain consists of a spherical molecular region of radiugi&suwith two equal, but opposite unit charges,
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andq, inside. The charges are placed on opposite sides of thésxeach at distance from the origin (see
Figure 9). Asd is increased, the charges move closer to the interfaceolbhéa becomes less well-behaved,
developing a sharp gradient at the interface. Uniform refieet does notféciently resolve the solution in this
scenario. However, adaptive refinement is able to refindlyoaeound the simplices at the interface, and gives
a significantly better convergence rate than uniform refgrnas shown in Figure 10. In particular, the rate of
convergence for adaptive refinement is nearly insensitivehanges in the parameter

1BOR

Finally, we compute the electrostatic solvation free eparftranscription factor PML (PDB code 1BOR),
and compare our value with the results in [59], where theyoshe, = 1, s = 80. The electrostatic free energy
of solvation is defined by [59]

5Gso1= 3 3" Q(60%) - romdx) (39)
=1

where ¢nomo IS the solution of equation 2a in homogenous enironmentstisa, = es = 1. In terms of the
regularized potential, the solvation free energy can be computed as,

1keT &

AGgql = EE ; Qju(xj) (39)
On a mesh with 131086 vertices, we compute the free energylat®n equal to -792.577 kgahol, which

compares well with the value of -853.7 kgabl computed from the MIBPB-IIl method in [59]. The free egwer

of solvation is sensitive to the geometry of the proteinacef We use GAMer to define this interface geometry,
and hence our result does not exactly match up with [59], veeoMISMS [60] to generate their protein surface.

5. Conclusion

The interface jump condition in (11) presents a challengéesign a single-domain FOSLS approach. We
overcome this diiculty with a choice of a vector parametgthat results in a consistent and well-posed first-order
system. The approach is also useful for solving the norafieguation using a Newton-FOSLS method [61], as
each step of Newton’s method wiltfectively involve solution of a linearized Poisson-Boltzmaequation. In
this paper we show that the resulting FOSLS functional defineorm equivalent to the norm &tt x H(div), yet
can be used in an existing finite element framework that usee standard piecewise continuous elementsin

We ofer numerical evidence in support of this approach and tesirtethodology on several problems. We
observe that adaptive refinement based on the FOSLS fuatscheme yields a faster convergence rate than
uniform refinement, and that thigfect is more pronounced for solutions that are more sharpljing
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